Share
Industrial Technology - Linked-in Industrial Technology - Twitter Industrial Technology - News Feed
Latest Issue
Diary and Events

Sensors & Instrumentation Live

NEC Birmingham(B40 1NT)

25/09/2019 - 26/09/2019

Sensors & Instrumentation Live will celebrate its 10 year anniversary in 2019 and the UK’s (more)

PPMA Show 2019

NEC, Birmingham(B40 1NT)

01/10/2019 - 03/10/2019

The UK’s largest ever event in the processing and packaging sector calendar. With over 350 exhibitors (more)

Advanced Engineering 2019

NEC, Birmingham(B40 1NT)

30/10/2019 - 31/10/2019

The UK's largest annual advanced manufacturing trade show, Advanced Engineering is your opportunity to (more)

Miniature motors prove key for reliable sewer robots

Miniature motors prove key for reliable sewer robots

Just a few metres below a busy street, a dazzling beam of light cuts through the darkness. A camera lens is transmitting images of wet, cracked walls to the surface where an operator intensively watches his monitor while he controls the robot. Not a scene from a science-fiction or horror film, but modern everyday life in sewer renovation. Motors from Faulhaber – available in the UK from EMS – are used for camera control, tool functions and the wheel drive.

The days when conventional construction teams went to work on the sewer system, digging up roads and crippling the traffic for weeks at a time are a thing of the past. Today, sewer robots can perform many inspection and renovation tasks from inside the pipes, playing an increasingly important role in the maintenance of urban infrastructure.

It was previously necessary to expose underground pipelines over long stretches just to localise damage. Today, sewer robots perform the assessment with no construction work at all. “There are different kinds of sewer robots,” explains Regina Kilb, who analysed this growing market segment at Faulhaber. “The devices for pipes with small diameters, usually shorter house connections, are attached to a cable harness. They are moved by rolling this harness in or out. They are equipped only with a swivelling camera for damage analysis.

Multi-functional heads

“For large pipe diameters, on the other hand, machines mounted on carriages and equipped with multifunctional working heads can be used,” she continues. “Such robots have long been available for horizontal and, more recently, vertical pipes.”

The most commonly used type of robot is designed for straight, horizontal travel in sewers with only a slight gradient. These self-propelled robots consist of a chassis – usually a flat cart with at least two axes – and a working head with integrated camera. Another version is able to navigate bends in the pipe. Lastly, there are robots that can even move in vertical pipes because their wheels or crawler tracks press against the pipe wall from the inside. A moveable suspension on the frame centres the device in the middle of the pipe; the spring system compensates for irregularities as well as small cross section changes and ensures the necessary traction.

These and other sewer robots are used not only in sewer systems, but also in industrial pipeline systems, such as in the chemical, petrochemical or oil and gas industries. “The requirements on the motors in the chassis are very high,” emphasises Kilb. “They must pull the weight of the cables that supply them with power and transmit the camera images. For this purpose, they require motors that deliver very high power with minimal dimensions.”

Working in the pipe

Sewer robots can be equipped with very versatile working heads for automated repairs. They are able to eliminate obstacles, incrustations and deposits or protruding sleeve misalignments through, for example, milling and grinding. They fill small holes in the pipe wall with a sealing compound carried on-board or bring a sealing plug into the pipe. On robots for larger pipes, the working head is located at the end of a moveable arm.

In such a sewer robot, up to four different drive tasks are handled: the wheels or the crawler tracks, the movement of the camera, the drive of the tools and the moveable arm that moves them into position. With some models, a fifth drive is used to adjust the camera zoom.

The camera itself must be swivelled and rotated so that it can always supply the desired viewing angle. The camera bracket does not require much space, which is why particularly small, yet very precise, motors are needed here. Possible options include the flat and, measuring just 12mm, extremely short gear motors of the 1512...SR series or even larger models of the 2619...SR series. Faulhaber’s wide range of products also includes stepper motors or brushless drives with diameters from 3mm as well as the corresponding gearheads. “With respect to their size, these drives achieve the highest efficiency and energy density that is available,” stresses Kilb.

Heavy cable-drag

The design of the wheel drive varies: the entire carriage, each axis or each individual wheel can be moved by a separate motor. Not only must the motor or motors move the chassis and attachments to the point of use, they must also pull along heavy pneumatic or hydraulic lines in addition to the electric cable.

With a range of up to 2,000m, the result is a cable drag of considerable weight. “Thus, the drive must produce a very high torque,” says the process engineer. “At the same time, movement is time and again impeded by an obstacle. Overload at full speed occurs regularly. This is something that only very robust motors and gearheads can withstand. For this type of use, we recommend the graphite-commutated 3257...CR series with the 32/3R gearheads or the brushless power pack of the 2264...BP4 series. The motor can be equipped with radial pins to secure the suspension and to absorb the forces that arise during overload.”

The motor for the robot arm requires less force than the radial drive and has more space than the camera version. The requirements on this power train are not as high as on the others in the sewer robot. “For this task, we have a very wide range of standard motors available,” says Kilb. “Among them is the optimum solution for every variant.”

Pipe in pipe

Today, damaged sewage pipes are often not replaced, but rather lined on the inside with plastic. For this purpose, a plastic tube is pressed into the pipe with air or water pressure. To harden the soft plastic, it is subsequently irradiated with UV light. There are, in turn, specialised robots equipped with high-power lamps that move through the pipes for this purpose. After they perform their work, the multi-purpose robots with working head must move in to cut out the lateral branches of the pipe. This is because the hose initially sealed all inlets and outlets of the pipe. During such applications, one opening after the next is milled into the hard plastic, often over the course of hours. The service life and reliability of the motors are of decisive importance here to allow work to be performed uninterrupted.

The drives for the tools, on the other hand, must by definition consistently deliver maximum performance – with small dimensions, since space is always limited in the function head. At the same time, motors that offer a particularly large amount of force and can operate trouble-free for a long time are needed for powerful gripping or for hours of milling.

“Motor type 2057...BHS, for example, has been developed for such milling heads and achieves speeds in excess of 30,000 rpm,” says Kilb.

Faulhaber motors and gearheads are available in the UK from EMS.

Download pdf
EMS

Other News from EMS

GPS for the Milky Way

Latest news about Electric motors

Additional Information
Text styles