Industrial Technology - Linked-in Industrial Technology - Twitter Industrial Technology - News Feed
Latest Issue

Displacement and temperature sensors get smaller and smarter

Displacement and temperature sensors get smaller and smarter

With pressure on motorsport teams to minimise the weight of onboard systems and therefore reduce fuel consumption, the requirement for extremely compact sensors is now a critical factor, especially when installation space is also restricted. This is also true for integration - both in terms of electronics and building more intelligence into the sensor itself, without the need for any bulky, separate controllers. This means that displacement and laser profile sensors are more frequently required to perform signal conditioning directly in the sensor, therefore reducing component count, whilst offering faster measurement speeds.

These sensors are used in almost every conceivable area of a vehicle, as well as for R&D, test cells, production and for on-vehicle testing. Applications range from measuring the wear on brake discs and clutches, to measuring turbocharger speeds, engine piston displacement, valve lift, ride height and monitoring the temperature profile of tyres.

Manufacturers of automotive turbochargers, for example, now require measurement systems to test the performance limits of their products. Measurement systems are required to monitor the temperature and speed of the blades on the turbine wheel. Due to increasing material stresses and higher speeds (up to 400,000rpm), turbocharger blades are now made from either aluminium or titanium, which presents a challenge in terms of measurement technologies. Titanium is a very poor electrical conductor and so eddy current sensors cannot be used easily on titanium.

However, using special linearisation and advanced electronics, measurement systems have been developed (such as Micro-Epsilon's turboSPEED sensors) that are able to accurately measure the speed (and temperature) of both aluminium and titanium turbocharger blades over the complete speed range - in both multiple test cell and on-vehicle testing. These sensors are robust, resistant to oil and dirt, extremely compact and slim, with the latest versions measuring just 3mm in diameter.

Miniaturisation of sensors is equally important in other areas. Hydraulic and pneumatic cylinders, valves and actuators, for example, are becoming ever smaller and therefore require more compact, ultra slimline position sensors for measuring displacement and piston position. More robust, pressure-resistant position sensors are now required. Compared to traditional methods of measuring displacement and piston position in hydraulic cylinders and valves (ie LVDTs and Magnetostrictive sensors), Micro-Epsilon's EDS series of sensors is much more compact in both its length and diameter. It uses a non-ferrous aluminium outer sleeve as its target, which can be easily integrated into the piston rod. This enables the sensor body to be a solid rod rather than a traditional LVDT style with a hollow sensor body and plunger, making it easier for OEMs to assemble and much more robust and reliable in harsh (on-vehicle) environments.

The sensors are manufactured from a pressure-resistant stainless steel (up to 450bar), can operate to 165°C and withstand extreme vibration and shock levels. The sensor electronics and signal conditioning are completely integrated in the sensor flange using very compact electronics. Compared to an LVDT with similar measurement range, EDS sensors are typically 50% shorter and much narrower in body diameter.

For such compact sensor geometries, it is necessary to use external electronics. However, the electronics are also very compact, typically 20x30x45mm and it is not necessary to match sensor to electronics like many other sensor solutions. Another benefit of such a compact design is that the length of the hydraulic cylinder does not have to be increased in order to accommodate a larger sensor (which would increase weight and the overall space envelope). These sensors operate without any contact between the moving parts and are wear-free.

Measuring ride height is also important in many motorsport applications. Non-contact laser displacement sensors can now be mounted to the wheel of a vehicle, with the laser window pointing down towards the ground or racing track. From here, these high speed sensors are able to accurately measure and monitor the ride height of the vehicle or motorcycle as it travels around the track. Suspension characteristics and engine power mapping can also be adjusted in order to optimise vehicle performance, whilst reducing energy consumption.

Infrared temperature sensors can be mounted to the chassis, tyres, brake discs, engine and power train - almost anywhere on a vehicle where temperature needs to be measured. Sensors even come with integral software that allows the user to change the emissivity of the infrared temperature sensor to suit different target materials such as steel, carbon or rubber.

For vibration and displacement measurements on hot glowing targets, for example in an engine powertrain, it has traditionally been a challenge to use displacement sensors due to the target being very hot and even glowing red on or near to the exhaust section. Red laser displacement have tried to perform these types of measurements, but with red-hot glowing objects, a conventional red laser has a high signal interference from the surface of the thermocouple, because it emits the same or very near wavelengths of light as the red laser.

To overcome this limitation, Micro-Epsilon has developed a Blue LED Laser Sensor family, which operates at a wavelength of 405nm. This wavelength is far from the red part of the visible spectrum, which means it is easier to filter this type of emitted light from the target, ensuring very stable signals. This is a world first for high accuracy laser triangulation sensors and not only works with on red glowing surfaces but also on white hot glowing targets.

When a vehicle stops or slows down, the brake discs need to absorb and dissipate the entire kinetic energy of the vehicle. The high amount of energy absorbed during vehicle braking transforms into heat, which makes a brake disc glow red hot under load. The shape of the brake disc can deform during braking as higher energy is absorbed. The full extent of this deformation or disc wear can also be measured using Blue Laser Sensors.

Download pdf

Other News from Micro-Epsilon UK Ltd

Thermal imaging camera with Ethernet interface includes autonomous operation

Latest news about Sensors and systems

Additional Information
Text styles