Share
Industrial Technology - Linked-in Industrial Technology - Twitter Industrial Technology - News Feed
Latest Issue
Diary and Events

Industry 4.0 Summitt

Manchester Central (M2 3GX)

28/02/2018 - 01/03/2018

Industry 4.0, the 4th industrial revolution, smart manufacturing, digital factories…these are (more)

Drives & Controls 2018

NEC, Birmingham(B40 1NT)

10/04/2018 - 12/04/2018

Drives & Controls exhibition is recognised as the UK’s leading show for Automation, Power (more)

UKIVA Machine Vision Conference

Arena MK(MK1 1ST)

16/05/2018

Following a successful launch in 2017, UKIVA Machine Vision Conference returns to Arena MK, Milton Keynes, (more)

High precision bearings for printing machinery

High precision bearings for printing machinery

To ensure the highest possible print quality, bearings for printing machines must be carefully matched to each application. Dr Steve Lacey of Schaeffler outlines the factors to consider when specifying bearings for sheet-fed and web-fed printing machines.

Printing machinery bearings are primarily used in the main cylinders of sheet-fed and web-fed printing machines and presses. Due to their high load carrying capacity, rigidity, accuracy and precision adjustment capability, these bearings support the key requirements of printing machines – high productivity, low maintenance costs and highest possible print quality.

Bearings for printing machines are normally specifically designed for each application, which requires the bearing supplier to work in close partnership with the manufacturer of the printing machine. As a result, the bearings are precisely matched to the requirements of the customer. However, finding the optimum technical and economical solution is always a challenge.

Furthermore, due to a wide range of requirements from customers, standardisation of bearings for printing machines is only possible to a limited extent. Therefore, the range of bearings available comprises many different types and sizes. As well as traditional multi-row, high precision cylindrical rolling bearings, suppliers can also offer non-locating bearing units (with and without eccentric geometries), locating bearing units, polygon bearings, combined linear and rotary bearing units, and tapered roller bearings. Bearings are also generally available with or without seals.

Printing machinery bearings are typically specified for use in centre plate cylinders, blanket cylinders, impression cylinders and transfer cylinders. In order to provide an optimum solution for the machine, the bearings must fulfil a range of different requirements:

Accuracy

The accuracy of cylinder bearings has a direct influence on the print quality output. Printing machinery bearings must therefore ensure that the cylinders in the printing process function together to an optimum degree. There must be no relative motion in a radial or axial direction. The bearings are therefore subject to high demands in terms of freedom from clearance, rigidity and runout quality. In addition, it must be possible to move the plate or form cylinders axially in a controlled manner and, depending on the machine type, to achieve oblique adjustment (diagonal register function).

Changing centre distances

In order to perform printing machine functions such as on-pressure, off-pressure or compensating for different paper thicknesses, it must also be possible to change the centre distances of the cylinders in the printing press.

Printing machinery bearings therefore have eccentric rings that can be swivelled through a specific angle reliably and with low friction. Bearings such as these provide a series of advantages for the user:

  • High accuracy: this is achieved as a result of the bearing accuracy (P5 or P4 tolerance class) and the bearing preload. As a result, the bearing design is clearance-free.
  • High rigidity: the accuracy and combination of bearing components, together with bearing preload, provide high radial system rigidity.
  • Reliable eccentric adjustment: a rolling element-based swivel bearing enables reliable, low friction, eccentric adjustment and prevents the possibility of jamming and premature wear.
  • Low operating temper-ature: due to their design, the bearings run with low friction. As a result, heat generated is minimised.
  • Compact design: the units combine all the necessary functions into a single bearing. This provides savings in terms of individual components (reduced com-ponent count), simplified handling and logistics.
  • Ease of mounting: as several functions are combined into a single bearing design, mounting and dismounting is simple and secure.  

Load carrying capacity

In most cases, determining the size of a particular bearing depends on the requirements for load carrying capacity, rating life and operational reliability of the bearings. In addition to these criteria, bearings for printing machines also need to provide high rigidity and be clearance-free.

In order to determine the rating life, the influence of preload in the bearing must also be considered. However, the rating life can also be influenced to a considerable extent by possible misalignment of the bearing journal/sleeve, the tolerances of the components, lubrication and contamination.

Design calculation software 

For optimum design of the bearings, design calculation software should be used. Schaeffler’s BearinX software, for example, allows highly realistic analyses of complex bearing systems for printing machine cylinders. 

In the design of three-ring and four-ring bearings, typically only the rotating cylindrical rolling bearing is taken into consideration, as this is the bearing subjected to the highest load. The swivel bearing is subjected to predominantly static load. For printing machines, bearings are normally designed for a rating life of at least 10 years. Depending on the duration of machine usage, this is equivalent to 40,000 to 60,000 hours for the bearing in a rotary printing machine. 

Bearings for sheet-fed offset printing machines are typically designed for an operating life of at least 200 million printed paper sheets. 

As these machines are used on a very flexible basis, they are often retooled to accommodate a new customer order and so are operated at widely varying speeds. It is therefore more appropriate to state the life as a number of printed paper sheets rather than in hours.

Rigidity of the system

The rigidity of the complete system is influenced not only by the cylinder and adjacent construction, but also to a large extent by the bearing design. Due to their larger contact surface area, cylindrical rolling bearings or tapered roller bearings have considerably higher rigidity than ball bearings. They can also be preloaded and operated with negative clearance. This results in reduced vibration, which in modern printing presses with no bearer rings is an important consideration.

Frictional torque

Another important characteristic of printing machine bearings is low frictional torque and therefore low bearing temperature. In general, the operating temperature of the bearing should not exceed +60°C in order to prevent any possible negative effects on the printing process. 

Cylindrical rolling bearings have particularly low friction and so are advantageous when operating printing machines at high speeds. Frictional torque and bearing temperature are heavily dependent on the following factors:

  • Bearing type
  • Bearing size
  • Speed
  • Load
  • Bearing clearance
  • Lubrication
  • Mounting position
  • Sealing concept

Lubrication

Lubrication has a significant effect on the bearing temperature. By using grease lubrication and special smooth-running grease, significantly lower bearing temperatures can be achieved compared to oil lubrication. If grease is used, sealing is also simplified. The advantage of oil lubrication is freedom from maintenance. However, the disadvantages include higher friction and bearing temperature, as well as more costly sealing. The cleanliness of the oil has a considerable influence on the rating life of the bearing.

In general, the oil used in the drive of the printing machine is also used for lubrication of the bearings. Normally, mineral-based or synthetic gearbox oils of viscosity classes ISO VG 68, 100 and 150 are used.

Sealing system

The function of the sealing system is to retain the lubricant in the bearing and prevent the ingress of contaminants and moisture into the bearing. In printing machines, the risk of contamination by solid particles is comparatively low and so simple gap seals offer adequate protection. However, these seals do not provide adequate protection from liquids that could be present during machine washdowns. Here, effective labyrinth seals or contact seals are required.

Download pdf

Other News from Schaeffler (UK) Ltd

Schaeffler takes over remainder of Compact Dynamics

Latest news about Bearings and slides

Additional Information
Text styles