Regenerative energy – the underestimated efficiency factor for machines

Many processes, particularly those that occur cyclically, have a high potential of regenerative energy that could be utilised easily and efficiently. However, when it comes to the technical solution and implementation of the machines, energy is often burned up in braking resistors, which is not only a waste of energy but also a fire hazard. Supply and regenerative units offer a practical and cost-effective alternative, says Mark Checkley, managing director of KEB UK. 

Many drive applications could benefit from the use of supply and regeneration units, whereby kinetic energy from braking or recirculating can be reused and fed back into the DC circuit through the drive or fed back onto the mains power supply line.

Traditionally, if an application generated excess kinetic energy, it was simply dissipated electrically or mechanically – through a braking resistor or through friction. By utilising regeneration drive systems, this unused, ‘lost’ energy now has valuable potential in many industrial applications by recirculating or feeding back onto the mains supply, reducing electrical running costs, as well as eliminating the heating effects from the braking resistors. The energy can also be put in ‘intermediate storage’ and harvested for use later to cope with any peak energy demands (due to heavy loads or high accelerations) from the application. Generator load cycles also frequently occur with electric drives, where historically the energy was often ‘heated’ in ballast circuits, can now take advantage of this technology.

In order to identify suitable applications for supply and regenerative units, before system integration a check will need to be made whether sufficient regenerative energy will be generated for sensible use. In addition to transporting this energy away, the infeed and regenerative unit also serve as ‘feeders’. This allows the number of feed points to be reduced and significantly simplifies the planning of the control cabinet. In order to deduce the possible applications, the application itself and its utilisation must be considered. This raises the question of where the regenerative energy is actually being generated. The answer lies in wherever masses are decelerated and therefore if kinetic energy can be converted.

As an application example, a typical storage and retrieval machine consists of running gear, a hoist unit and a load handling device. These machines normally have a high mass – the optimal application for a power supply and regen unit. When accelerating such a mass by the running gear, very high power is required. The same applies to the braking process. Here, a drive controller can be used to electrically decelerate the masses quickly and safely. All the regenerative energy generated in this process can be dissipated by a supply and regen unit. Hoist applications are even greater sources of this energy, which is generated during each ‘lowering’ operation depending on the load being handled. Even when all axes are coupled in a DC link to exchange energy, there is still a significant amount of energy left over.

In other industrial sectors, potential applications for supply and regen units include woodworking, textile machines, process technology, wind turbines and generators, theatre technology, theme parks, centrifuges, cranes, conveyor systems, elevators and test benches. In this context, KEB is often asked whether plant operators are allowed to feed back into the public power grid at all. The answer is ‘yes’ because they are not classed as power generation plants.

Regeneration becomes a compelling economic choice when the value of the recovered energy is large compared to the cost of a regenerative system. So if the system requires frequent braking and starting, or where there is speed control of overhauling loads, it would be worth considering, provided a clear understanding of the system dynamics are known.

Active or passive feed-in are possible. Passive feed-in means that the infeed and regen unit are grid-connected and the DC link is fixed based on the infeed voltage. On the other hand, active feed-in means that the infeed and regen unit are actively controlled, for example, to regulate the DC link voltage.

A regen unit also brings economic benefits. Often the acquisition costs have paid for themselves after less than two years, after which, you also earn money with the expanded system. The payback period is quickly determined by the utilisation of the system, the number of motion cycles and the price of electricity.

Supply and regen units are an easy replacement solution for braking resistors and they can be used for all common supply voltages of 180...528V AC, 50/60Hz. Most are compact and lightweight and are often supplied with an integrated pre-charging circuit along with optional choke or harmonic filter. As braking resistors are no longer required, supply and regeneration units can reduce the risk of heat / fire in sensitive areas, as well as reducing the cooling requirements of the environment. Optional fieldbus interfaces are normally provided as well as freely configurable inputs and outputs. For some applications, users can even fit energy meters in order to validate their energy savings.

KEB (UK) Ltd

5 Morris Close
Park Farm Industrial Estate
Wellingborough
NN8 6XF
UNITED KINGDOM

+44 (0)1933 402220

info@keb.co.uk

www.keb.co.uk

More products
Individual service for signal integrity
The demands on connection technology performance are constantly increasing. By providing customised support, Phoenix Contact helps customers select connection components to ensure the highest possible signal integrity.
Aveva MES rises in the leader ranks of the latest Gartner report
Aveva’s Manufacturing Execution Systems (MES) offering, which is deployed in the UK & Ireland by AVEVA Select partners SolutionsPT, has been recognised as a global leader in industrial software in the latest 2022 Gartner Magic Quadrant for Manufacturing Execution Systems.
Siemens selected by Microsoft for RAMP Programme
Siemens Digital Industries Software has been selected to participate in the Rapid Assured Microelectronics Prototypes (RAMP) Phase II initiative.
Thomson Industries exhibits linear actuators for the marine industry
Thomson Industries will be exhibiting at the 30th Shipbuilding, Machinery and Marine Technology (SMM) trade fair in Hamburg in September, showcasing its comprehensive line of electric linear actuators for marine applications.
Harwin and MSA Components sign German distribution deal
Harwin is bringing greater strength to its German supply chain through a new strategic partnership with MSA Components. The agreement allows MSA to offer all the latest products from Harwin’s extensive portfolio.
Mould making at Emka for injection moulding of plastics and metals
Emka reports that it is now one of the top three mould makers in Europe – producing 900 moulds a year for plastic injection, including polyamide/glass and Grivery, as well as zinc and aluminium die casting.
Kontron receives VDC Research’s Gold Award for vendor satisfaction
Kontron has been recognised for outstanding customer satisfaction. The company has received the Gold Vendor Satisfaction Award for IoT and Embedded Hardware technology from VDC Research.
Mouser wins Vishay Distributor of the Year Award
Mouser Electronics has received the 2021 High Service Distributor of the Year award from Vishay Intertechnology, one of the world’s largest manufacturers of discrete semiconductors and passive electronic components.
What changes does the new machinery regulation bring?
As the machinery regulation replaces machinery directive 2006/42/EC, Dirk Meyer, specialist engineer solution architect at Eaton, looks at what is changing.
Klüber Lubrication receives Schaeffler Supplier Award 2022
Schaeffler has awarded Klüber Lubrication with the Supplier Award 2022 in the field of quality. The jury emphasised in particular the global supplier's strong commitment to the compliance with quality standards.

Login / Sign up